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Abstract. The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A
source of neutron-rich nuclei based on the neutron-induced fission can be realised using these beams. A
theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The
model used to determine the fission products takes into account the excitation energy of the target nucleus
and the evaporation of prompt neutrons. Results are presented in connection with a converter-target
specific geometry.

PACS. 25.85.Ca Spontaneous fission – 25.85.Ec Neutron-induced fission – 24.75.+i General properties of
fission

1 Introduction

The fission process of heavy nuclei at low energy gives
rise to neutron-rich fragments. Exploiting this property,
a source of nuclei towards the stability limit can be con-
ceived [1]. A high flux of neutrons able to produce the
fission events can be obtained through the deuteron break-
up reaction in some suitable converter placed in the vicin-
ity of the fissioning target. The feasibility study of a fa-
cility based on the above concept is the main purpose
of the PARRNe [2,3] (Production d’Atomes Radioactifs
Riches en Neutrons) ongoing project. The fissioning tar-
get is made from 238U. This work is mainly guided by the
NuPECC recommendations established in order to inves-
tigate the main options for second-generation radioactive
beam facilities in Europe [4]. Such studies were carried
also in ref. [5] using the LAHET code in order to estimate
fission rates.

In the following, a theoretical optimization of such a
combination is elaborated by taking into account the in-
fluence of the incident deuteron energy on the variation of
the fission isotopic product yields. The β-decay of unsta-
ble isotopes is not considered here. Throughout the rest
of this paper, the term fission fragment refers to the frag-
ments before prompt neutron emission, and the term fis-
sion products refers to the products after prompt neutron
emission [6]. The fission model, initially reported in ref. [7],
is presented here in an extended version suitable for sym-
metric decays. The isotopic distribution for all the fission
products can now be determined.
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The incident energy of the deuteron causes changes in
the angular and energetic neutron distributions. So, the
converter-target geometry of the facility must be inves-
tigated at each incident deuteron energy. The energy of
the neutron impinging on the 238U-target rules the exci-
tation of the compound nucleus 239U or the residual 238U
obtained in inelastic collisions. It is known that the excita-
tion energy affects the isotopic products yields because the
fission barrier is modified for each fragments binary parti-
tion (A1Z1, A2Z2) and the number of evaporated neutrons
varies.

The paper begins with a theoretical investigation of the
relative variations of the isotopic yields of fission products
as a function of the excitation energy of the compound
nucleus 239U and the excited 238U. The fission model will
be presented in the following section. Furthermore, for a
given experimental geometry, the yields of the neutron-
rich isotopes obtained in the fissioning target are deter-
mined with respect to the incident energy of the deuteron.
The number of fission events produced in the target for a
given converter-target geometry as a function of the inci-
dent deuteron energy will be deduced. Results are com-
mented in connection with experimental data in the last
section.

2 Fission model

This neutron-induced fission model is based essentially on
the hypothesis of a sudden dissipation process of the ex-
citation energy carried in by the incident neutron.
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Fig. 1. The nuclear shape parametrization. The upper part
corresponds to a negative neck parameter C = S/R3, while
the lower one corresponds to positive C values.

2.1 Nuclear shape parametrization

Due to the leptodermous character of the nuclear systems,
it is convenient to consider that during the fission, the
shape degrees of freedom vary and rule the evolution of the
system. In general, many degrees of freedom are needed
to specify accurately the shape of a decaying nucleus. It is
however considered that a set of three degrees of freedom
is the barest minimum to display the essential features of
fission: the elongation, the necking and the mass asymme-
try [8].

The nuclear parametrization is defined by joining
smoothly two intersecting spheres of radius R1 and R2

with a neck surface generated by the rotation of a circle
of radius R3 around the symmetry axis [9], as presented
in fig. 1. The distance between the center of this circle and
the axis of the symmetry is given by ρ3. By imposing the
condition of volume conservation, the surface is perfectly
determined by the values of the parameters R (distance
between the centers of the spheres), R3 (the radius of the
neck) or C = S/R3 (where S = +1, when ρ3 − R3 ≥ 0
and S = −1, when ρ3 − R3 < 0) and R2 (the radius
of the emitted fragment) or η = V1−V2

V0
. These three pa-

rameters characterize the elongation, the necking and the
mass asymmetry, respectively. Due to the axial symmetry
of this system, the surface equation is given in cylindrical
coordinates

ρs(z) =




[
R2
1 − (z − z1)2

]1/2
, z ≤ zc1,

ρ3−S
[
R2
3−(z−z3)2

]1/2
, zc1 < z < zc2,[

R2
2 − (z − z2)2

]1/2
, z ≥ zc2.

(1)

For extremely large values of R3, that means for C =
S/R3 ≈ 0 fm−1 the parametrization in the interval zc1 <

z < zc2 is described by the relation

ρs(z) = [a(z − zc1) + b]1/2

with

a = {[R2
2− (zc2− z2)2] 12 − [R2

1− (zc1− z1)2] 12 }/(zc2− zc1),

b = [R2
1 − (zc1 − z1)2]

1
2 .

The significances of all the geometrical symbols are pre-
sented by means of fig. 1. Throughout this paper, the sub-
scripts 0, 1 and 2 help to assign the parent, the daugh-
ter (heavy fragment) and the emitted (light fragment)
nuclei, respectively. The initial radius of the parent is
R0 = r0A

1/3
0 , the final radii of the two fragments are

Rif = r0A
1/3
i , with i = 1, 2 and the constant radius

r0 = 1.16 fm. In eq. (1), ρs denotes the value of the co-
ordinate ρ on the nuclear surface. “Diamond”-like shapes
are obtained for S = −1 and necked-in shapes for S = +1.

When S = −1, the volume of the emitted fragment V2
cannot be determined unambiguously without introducing
a supplementary hypothesis. In this special case, the shape
does not show a separation plane between the nascent
fragments. So, it is considered that V2 must be computed
from half the distance between the centers z2 − R/2 up
to the side z2 + R2. In the case S = +1 we compute
this volume between [z3, z2 + R2]. When R3 = 0 fm, the
simple parametrization of two intersecting spheres is ob-
tained. This nucleus shape parametrization was widely
used in nuclear dynamic calculations [10–12] in a large
range of mass asymmetries because it accounts for the
most important degrees of freedom encountered in fis-
sion processes: elongation, necking and mass asymme-
try. In the following, sometimes, in place of R we use
R/∆ which defines the normalized coordinate of elonga-
tion with ∆ = R1 +R2 + 2R3 being the point of scission.
Also, ∆t = R1f + R2f denotes the touching point config-
uration when the two fragments have spherical shapes.

Instead, the mass asymmetry generalized coordinate
R2f used in ref. [7], that is, the final radius of the light
fragment, in the following, the quantity η = A1−A2

A0
=

V1−V2
V0

will be taken as the mass asymmetry. The equation
of volume conservation is solved in order to obtain R1 and
R2, the radii of the heavy and the light fragment, such
that the volumes V1 and V2 correspond to the masses A1

and A2.
In fig. 2, the possible shapes for the symmetric fis-

sion of 238U are plotted with respect to the elongation
and the necking of the nuclear system. For positive val-
ues of the parameter C = S/R3 we obtain necked shapes,
while, for negative values of C, the parametrization gives
swollen shapes in the central region. Swollen shapes are
geometrically possibles only up to a fixed value of the
elongation, depending on C. In the positive region, the
elongation for the scission configuration decreases with in-
creasing C, reaching the lower limit ∆t = r0(A

1/3
1 +A

1/3
2 )

for R3 = 0 fm.
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Fig. 2. Family of nuclear shapes in the (C, R/∆t) plane for the

symmetric fission of 238U. ∆t = r0(A
1/3
1 +A

1/3
2 ) is the elonga-

tion which characterizes the two tangent spheres configuration.
The path obtained by minimizing the integral action is plotted
with a thick line.

2.2 Penetrabilities

The probability to obtain a binary partition
(AHZH , ALZL) is ruled by the barrier penetrability.
Using the last action trajectory principle it is possible to
obtain the path in the configuration space followed by
the fissioning system [13]. The quantum penetrability

P =exp

{
− 2
h̄

∫ Rf

Ri

√
2B

(
qi, R,

∂qi
∂R

)
[Ed(qi, R)−Ev]dR

}

(2)
is calculated by using the semi-classical Wentzel-Kramers-
Brillouin (WKB) approximation. The region of interest
is classically forbidden. However, the action trajectory is
determined along a classical trajectory between the ini-
tial Ri and final Rf turning points corresponding to the
entrance into the sub-barrier region and the exit on the
other side of the potential. The two turning points are
fixed by the same value of the deformation energy, that
is, Ed(qi, Ri) = Ed(qi, Rf ) = Ev. Here, {qi} denotes the
set of generalized deformation parameters, excepting the
elongation R. In the functional (2), B gives the inertial
mass, Ed is the deformation energy determined so that its
value in the ground state is zero and Ev ≈ 0.5 MeV is
the zero-point vibration energy. The condition of consis-
tence must be fulfilled: the same shape for the inertia, the
microscopic and macroscopic energies.

2.3 Deformation energy

The main key steps to deduce the deformation energy Ed

are presented in the following.

2.3.1 Macroscopic deformation energy

The macroscopic deformation energy was computed in
the framework of the Yukawa-plus-exponential [14] model
extended for binary systems with different charge densi-
ties [15], where another degree of freedom is introduced,
namely, the charge asymmetry. The charge density of the
system is kept initially unchanged (up to 0.7∆t), and in
the final stages of the process, where very necked forms are
reached, the charge densities of the two fragments are lin-
early varying functions of R up to their final values in the
output channel. The values of the numerical parameters
are from ref. [16]. Both nuclear En,

En=− a2
8π2r20a4

∫
V

∫
V

(r12
a

− 2
)exp(− r12

a )
r12
a

d3r1d3r2 (3)

and Coulomb Ec,

Ec =
1
2

∫
∞

∫
∞

ρe(r1)ρe(r2)
r12

d3r1d3r2 (4)

(with r12 =| r1 − r2 |) energies are expressed as a sum
of three shape dependent terms: the self-energies of the
fragments (Bni, Bci, i = 1, 2), plus the interaction energy
(Bn12, Bc12)

En/E
0
n=(cs1/cs)Bn1 + [(cs1cs2)1/2/cs]Bn12 +(cs2/cs)Bn2

(5)
Ec/E

0
c =(ρ1e/ρ0e)2Bc1+(ρ1eρ2e/ρ20e)Bc12+(ρ2e/ρ0e)2Bc2,

(6)
where E0

n and E0
c correspond to the spherical shapes, ρie

are charge densities and

csi = as[1− κs(Ni − Zi)2/A2
i ], (7)

ρie = 3eZi/(4πr30Ai) (8)

with the parameters: as = 21.13 MeV, κs = 2.3, a =
0.68 fm, aV = 15.9937 MeV, κV = 1.927. The quanti-
ties Bni and Bci in the above equations are dependent on
the nuclear shape; their expressions containing two- and
threefold integrals are evaluated by numerical quadrature.

Furthermore, the contribution of the volume energy
EV is added proportionally to the light fragment radius
so that EV = 0 when R2 = R0 and

EV = EV 1 + EV 2 − EV 0 (9)

when R2 = R2f . The volume self-energies of the fragments
are

EV i = −aV [1− κV (Ni − Zi)2/A2
i ]. (10)

A linear interpolation also proportional to the light vol-
ume fragment is used to simulate the existence of the
Wigner energy EW

EWi = −7 exp(−6 | Ii |) MeV, (11)

where Ii = (Ni − Zi)/Ai is the relative neutron excess of
each nucleus.
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So, the total deformation macroscopic energy becomes

ELDM = En + Ec + (EV + EW)
R2 −R0

R2f −R0
− E0, (12)

where R2 is the radius of the light fragment during the fis-
sion process (it begins from R0 for the initial parent con-
sidered spherically and reaches its final radius R2f after
the scission). E0 is the liquid drop energy of the spherically
parent.

In the barrier region, the modulation of the potential
energy surface by shell effects leads to the famous double-
humped barrier for actinides. These effects are based on
the following microscopic treatment.

2.3.2 Level scheme

The single-particle energetic levels are obtained with an
improved version of the Superasymmetric Two-Center
Shell Model (STCSM) inspired from the work of Maruhn
and Greiner [17]. For a rigorous analysis of the microscopic
model, the reader can refer to ref. [18] and refs. [19,20],
where the model was improved. The STCSM was proved a
useful tool in the microscopic treatment of superasymmet-
ric fission, including cluster [19–21] and alpha [22] decay.

For the nuclear shape parametrization presented
above, the microscopic potential (in cylindrical coordi-
nates) is split into several parts which are treated sep-
arately

V (ρ, z, ϕ) = V0(ρ, z) + Vas(ρ, z) + Vn(ρ, z)
+Vls(ρ, z, ϕ) + Vl2(ρ, z, ϕ)− Vc, (13)

where V0(ρ, z) represents the two-center harmonic poten-
tial whose eigenvectors can be analytically obtained by
solving the Schrödinger’s equation. It is given by the rela-
tion

V0(ρ, z) =

{
1
2m0ω

2
z1(z + z1)2 + 1

2m0ω
2
ρρ

2, z < 0
1
2m0ω

2
z2(z − z2)2 + 1

2m0ω
2
ρρ

2, z ≥ 0,
(14)

where m0 is the nucleon mass, z1, z2 (reals, posi-
tives) represent the distances (conditioned by the rela-
tion z1 + z2 = R) between the centers of the two spherical
fragments and the intersection plane between the spheri-
cal shape of the daughter and the spheroid shape which
overlaps the emitted nucleus (see fig. 2 in ref. [18]), and
ωi are the oscillator stiffnesses. In the case of symmetric
fragmentation, ωz1 = ωz2 = ωρ and the parity becomes
a good quantum number. The eigenvalues and the eigen-
vectors for reflection symmetric systems must be deduced
using the mathematical formalism presented in refs. [23,
24].

The role played by the other terms in the total po-
tential, i.e., Vas, Vn, Vls, Vl2 , Vc is related to the mass
asymmetry, to the necking, to the spin-orbit coupling, to
the l2 correction and to the depth of the potential, respec-
tively and are defined as in ref. [18].

Due to the cylindric symmetry of the system, the quan-
tum numbers along the ρ-axis (nρ) and ϕ-coordinates (m)
are constants of the motion. This property leads us to
know which adiabatic levels are occupied by an unpaired
nucleon during the process as a function of the final split-
ting of the system. In these circumstances, we are able to
apply the blocking effect to the unpaired nucleons during
the fission process for each studied channel.

The spin orbit and l2 coefficients are obtained from ref.
[25] by interpolating the published values as a function
of their mass. Vc is considered 0. These coefficients are
mainly determined for nuclei close to the stability line.
Therefore, we do not expect very accurate results in the
mass determination of neutron-rich isotopes.

2.3.3 Shell effects

The shell effects are computed using the well-known
Strutinsky procedure [13,26]. The total energy is the sum
of the liquid drop energy and the shell and pairing effects
due to the proton and neutron level schemes.

The shell correction is

δVp(n) =
[ Z(N)∑

ν=1

εν −
∫ λ̃

−∞
εg̃(ε) dε

]
, (15)

where εν are the single-particle energies, λ̃ is the Fermi
energy for the smoothed level density,

g̃(ε) =
1
γ̃

∫ ∞

−∞
F(

ε− ε′

γ̃
)
∑
ν

δ(ε− εν)dε′ (16)

is the mean density of single-particle levels, γ̃ is an interval
around the Fermi energy which is taken at least 1.15 (in
h̄ω units) times the value of the mean distance between
the major shells of the light fragment, while

F(x) =
1

π1/2
exp(−x2)

2m∑
k=0,2

akHk(x2)

is the well-known Strutinsky smoothing function with Her-
mite polynomials. The single-particle levels are normalized
with h̄ω. As remarked in ref. [27] for asymmetric fission
processes, the shell effects are determined more accurately
if h̄ω has the value associated with the mass of the light
fragment. So, it is considered that h̄ω varies linearly from
h̄ω0 = 41/A1/3

0 to h̄ω2 = 41/A1/3
2 at scission, in a way

similar to that mentioned for the charge asymmetry. For
the same reason, in the present calculations γ̃ = 1.4. The
sum over ν means for all the levels with energies below
the last occupied level. The smooth value of the Fermi en-
ergy λ̃ is obtained as usual from the condition of number
conservation. If the parent possesses an odd number of
protons (Z) or neutrons (N), the procedure is the same,
taking care to consider the last level nondegenerate in the
sum (15) and in the particle number conservation equa-
tion. If the nucleus is excited, the pair initially located
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Fig. 3. The 238U deformation energy Ed in MeV for symmetric
nuclear shapes. The step value between the equipotential lines
is 1 MeV. Some values of the energies are marked on the plot.
The ground state is located by a point of coordinates R/∆t =
0.62 and C = −0.022 fm−1.

in the last occupied level ε0 is broken and two unpaired
nucleons reach the levels ε1 and ε2. Consequently, a cor-
rection Ccor = |ε1 − ε0| + |ε2 − ε0| is added to the shell
effects.

The pairing correction is (for protons label p and for
neutrons label n)

δPp(n) = P − 1
2
g(λ̃)∆̃2, (17)

where P is the pairing value obtained directly from the
level scheme, while ∆̃ = 12/A1/2 is the smoothed distri-
bution gap parameter. ∆ and λ are deduced from the BCS
equations on the form

n+nc∑
ν=n−nc

1
[(εν − λ)2 +∆2]1/2

= 2g̃(λ̃)ln
(
2Ω
∆̃

)
, (18)

Z(N) =
∑
ν

1− εν − λ

[(εν − λ)2 +∆2]1/2
(19)

and Ω is an energetic interval of the order of γ̃, 2Ω =
2nc/g̃(λ̃) is the number of states taken into account. The
phenomenological gap parameter ∆̃ was forced to vary
linearly from 12/A1/2

0 up to 12/(A1/4
1 A

1/4
2 ) as considered

for the charge asymmetry. For odd filled level we appealed
to the blocking effect in computing this correction.

The deformation energy

Ed = ELDM + δVp + δVn + δPp + δPn (20)

in MeV is represented in fig. 3 for the symmetric fission
of 238U. In this representation, the energy reference was

modified such that Ed = 0 in the ground-state position.
This plot evidences a very pronounced minimum which
belongs to the ground state, marked with a point. A sec-
ond minimum, at 4 MeV, is located at a more elongated
shape and smaller values of C. The calculations presented
in fig. 3 are achieved under the assumption that the energy
levels are filled pairwise.

2.4 Excitation energy

The excitation energy brought by the incident neutron
modifies the potential barrier and the ground-state energy.
It is considered that a preformation of the fission channel
occurs when the target nucleus receives energy. For exam-
ple, in the case of protons, the excitation energy can break
a pair of protons and the atomic numbers of the nascent
fragments Z1 and Z2 become odd. In this early stage, two
single-particle levels, εH and εL belonging to the heavy
and light fragments will be occupied by unpaired protons.
As briefly mentioned above, the deformation energy for
odd Z1 and Z2 must be corrected and must be now deter-
mined using the relation δV odd

p = δVp+|εH−ε0|+|εL−ε0|.
It must be pointed out that the pairing correction takes
into account the blocking of the levels εH and εL. The ex-
citation energy will be E∗ = E∗

c − |εH − ε0| − |εL − ε0|,
where E∗

c is the initial energy brought by the neutron. In
this particular case, if E∗ < 0, the barrier is increased
with |E∗|.

We use the Franck-Condon principle in a sense similar
to that presented in ref. [28] where it is evidenced that,
in an ideal collective model, the excitation process takes
place in such a way that the positions and velocities coor-
dinates of the heavy part of the system remain unchanged.
For a fixed point in the configuration space of the defor-
mation coordinates, associated to the ground state of the
system, we assume the system shifts from one potential
to another. In our interpretation, this principle is equiv-
alent to say that the “damping”, as one way to speak of
the exchange between vibration and nucleonic excitation,
is produced in a very short time at the beginning of the
process. So, this model is based on a sudden dissipation
process.

The excitation energy will damp the shell effects. For
simplicity, we assume an exponential decay [29]

Utot = ELDM + δU(T = 0) exp(−T 2/T 2
0 ), (21)

where ELDM is the liquid drop potential along the trajec-
tory path and δU = δVp + δVn + δPp + δPn is the sum
of shell and pairing corrections (for both the neutron and
proton scheme). The nuclear temperature T is connected
with the excitation energy [30]

E∗ =
1
9
A0T

2 − T, (22)

where the value T0 = 1.5 MeV allows the shell correc-
tions to vanish if E∗ > 60 MeV. So, when the nucleus is
excited, according to the Franck-Condon effect, the sys-
tem will jump from a ground-state potential energy to
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Fig. 4. Top: Mass and charge symmetric fission barrier ob-
tained along the path of minimum action integral by consider-
ing that the single-particle levels are pairwise filled and E∗ = 0
MeV. Bottom: Mass and charge symmetric fission barriers cal-
culated at three excitation energies considering that the last
neutron pair is broken. The trajectory in the configuration
space is the same as in the upper part of the figure. Full line:
E∗ = 0 MeV; dashed line: E∗ = 50 MeV and dotted line:
E∗ = 200 MeV. Due to the Franck-Condon effect, the system
shifts from the potential barrier at E∗ = 0 MeV to another
one.

another, characterized by a fixed nuclear temperature.
The deformation energy at a temperature T will be now
Ed(T ) = Utot(T )−Ugs

tot(T ), where Ugs
tot(T ) is the deforma-

tion energy at the same temperature T in the ground-state
point of the configuration space at T = 0.

In fig. 4, the Franck-Condon principle is illustrated for
the mass and charge symmetric 238U fission. In the present
formalism, the Franck-Condon principle is employed dur-
ing the whole fission process, beginning with the ground-
state nuclear shape. This principle allows a determination
of the deformation energy shift produced by the rupture
of a nucleon pair and due to the excitation energy. Other-
wise, the ground-state energy is not modified. The energy
shift, produced by a nucleon pair rupture, is also subject
to the exponential law (21). So, at high energies, this en-
ergy shift vanishes, in a similar manner as the shell effects.
Nevertheless, this treatment can produce a very large odd-
even effect in the fragment yield distributions, especially
at low energies.

It must be mentioned that the STCSM only simulates
the variation of the single-particle levels towards swollen

Fig. 5. The 238U BRR/µ diagonal element of the inertia tensor
for symmetric nuclear shapes. µ = A1A2/A0 is the reduced
mass of the system. The difference between two contour level
values is 0.2.

nuclear shapes in the central region, that is, for small val-
ues of C. In other words, the model is not adequate to
obtain good positions of the single-particle energies in the
region of small values of C because the spin orbit and
L2 terms are constructed for a two-intersected-spheres
parametrization. For example, the definition of the an-
gular momentum L operator is L = ∇V × p, where V is
the deformed single-particle potential. The STCSM uses
the two-center potential of two intersected spheres to sim-
ulate V in the definition of L. So, the experimental values
of the heights of the humped barrier cannot be reproduced
exactly.

2.5 Tensor of inertia

In a n-dimensional deformation space, where the nuclear
shape is described by a set of independent coordinates
{qi}, the inertia tensor {Bij} is defined by the equation
of kinetic energy Ek [31,32]

Ek =
1
2

n∑
i,j=1

Bij(q1, q2, ..., qn)
∂qi
∂t

∂qj
∂t

. (23)

There are different methods of calculation for these quan-
tities. One of the most used methods to obtain the effective
mass is the Werner-Wheeler approximation. It is assumed
that this tensor is a measure of the collective motion of
the nuclear matter. The flow of the fluid is idealized as
nonrotational, nonviscous and hydrodynamical. To obtain
the inertia B(s) along the trajectory, the multidimensional
problem can be reduced to a single-dimensional one

B(s) =
n∑

i,j=1

Bij(q1, q2, ..., qn)
∂qi
∂s

∂qj
∂s

(24)
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Fig. 6. Same as fig. 4 for the log10(BCC/µ) diagonal element
of the inertia tensor. The dimension of BCC/µ is fm−4. µ =
A1A2/A0 is the reduced mass of the system. The difference
between two contour level values is 1.

Fig. 7. Same as fig. 4 for the log10(BRC/µ) off-diagonal ele-
ment of the inertia tensor. The dimension of BRC/µ is fm−2.
µ = A1A2/A0 is the reduced mass of the system. The difference
between two contour level values is 1.

for a path given parametrically by the equations qi =
qi(s). s is generally an independent, arbitrary parameter,
but could be chosen as one of the independent generalized
coordinates, in particular R, like in our case.

In the case of symmetric decays, the shapes are ruled
by two degrees of freedom: the elongation R and the neck-
ing C. The variations of the diagonal elements BRR and
BCC , together with those of the off-diagonal BRC = BCR

term are plotted in figs. 5, 6 and 7. It is interesting to note
that, while the lower values of the deformation energy Ed

can be found in the region characterized by small values of
C, the effective masses increase in this region of the con-
figuration space. Very large values can be obtained in the
scission region. After the rupture, BRR = µ = A1A2/A0,
i.e., the reduced mass of the system and BCC = BRC = 0.

2.6 Action integral minimization

It is not practically possible to compute the least-action
trajectories for all fragment partitions (A1Z1, A2Z2) and
for all excitation energies E∗. Therefore, the least-action
trajectory was determined for the symmetric cold fission
process of the parent 238U and it was considered that the
parametrical form obtained for this path represent a good
approximation for the other channels.

In the case of symmetric decays, the shapes are ruled
by two independent degrees of freedom: the elongation and
the necking. The action integral is minimized in a bidimen-
sional configuration space. The first turning point Ri of
the action integral denotes the ground state of the parent.
The second turning point Rf must be on the equipotential
line of the exit barrier deformation energy surface fulfill-
ing the condition Ed(C,Rf ) = Ed(C,Ri)= constant. This
condition determines a dependence Rf = f(C). For each
Rf a local minimum of the action integral can be found.
Using a simple numerical method [33,34] the path, associ-
ated to the local minimum, followed by the nuclear system
can be parametrized. The action integral functional is ap-
proximated with the Gauss-Legendre quadrature, that is,
a function which depends on a set of variables {Cj} giv-
ing the values of the necking-in for different values of the
elongations {Rj}, Rj ⊂ (Ri, Rf )

∫ Rf

Ri

√
2B

(
R,C, ∂C∂R

)
E(R,C)dR ≈∑Ng

j=1 wj

√
2B

(
R,Cj ,

∂C
∂R

∣∣
R=Rj

)
E(Rj , Cj)(Rf −Ri),

(25)
where

B

(
R,C,

∂C

∂R

)
= BRR +BCC

(
∂C

∂R

)2

+ 2BRC
∂C

∂R
(26)

is the inertia along the trajectory. Here, wj represents the
Gauss-Legendre weights, Rj are the mesh points of the
quadrature and, in the present calculations, Ng = 32. So,
the action integral which was a functional of the path
C(R) in the configuration space depends now on an even
number of variables Cj fixed in the mesh points. The
derivatives ∂C

∂R

∣∣
R=Rj

were obtained using spline interpo-
lations. The global minimum can be found by evaluating
the local minimum for all the possible exit point of the
barrier Rf . The global minimum path evaluated numeri-
cally in this manner is presented in fig. 2. As mentioned,
because the evaluation of the trajectories for all possi-
ble partitions and all the excitation energies is not rea-
sonable in practice, this parametrization of the path will
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Fig. 8. The 238U fission barriers are represented scanning the entire range in Z while the N range in step of three neutrons.
The values of A2f and Z2f are marked on each plot. The full line corresponds to E∗= 0 MeV, the dashed line to E∗= 50 MeV
and the dotted line to E∗= 200 MeV.

be extrapolated for all mass asymmetries and any excita-
tions. For asymmetric fission processes, a linear variation
of the asymmetry parameter η from 0 (in the ground state
of the parent) and the final A1−A2

A0
(when the scission is

reached) is taken into account. This kind of treatment is
partially supported by the affirmation found in refs. [35,
36] that the trajectories for spontaneous and induced fis-
sion are identical or at least similar. Another argument in
favour of this treatment can be extracted in connection
with the topographic theorem [37]. This theorem asserts
that the saddle point shape of the fission is better deter-
mined in the frame of the macroscopic theory, neglect-
ing the shell effects. This statement follows from energetic
considerations. Fortunately, our optimum path is deter-
mined in the neighbourhood of C = 0, in a region where
the variations vs. C of the macroscopic energies are neg-
ligible and where the macroscopic deformations energies
reached their lower values. This energetic behavior some-
what justifies our working extrapolation of the fission path
at all excitation energies.

The potential barriers obtained in this way are dis-
played in figs. 8 and 9 for all the asymmetries, the light
fragment mass scanning all the interval taken into consid-
eration. A second minimum is clearly visible in almost all
the cases at R/∆t ≈ 1.2. Also, the heights of the two bar-
riers have lower values in the even A2f = 100–106 zone.
Between the two turning points (defined Ri and Rf in the
text, where Rf is the exit turning point) we used the path
parametrization obtained for symmetric fission. But, there
are no reasons that the deformation energy in the case of
asymmetric channels reaches the value 0 MeV in Rf . So, a
point with coordinates C = 0.245 fm −1 and R/∆t = 1.74
was added to the parametrization. In this point, the defor-
mation energy is negative for all the channels, that helps
us to obtain the second turning point. However, it seems
that for very large charge and mass asymmetries, the en-
ergy adiabatic exit valley (situated approximatively along
a line in fig. 3 from C ≈ 0.025 fm−1, R/∆t = 1.1 to 1.6)
is shifted towards larger values of C, i.e., towards more
pronounced necks. The energy island (approximatively
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Fig. 9. Same as fig. 8 for 239U fission.

located by the value of 10 MeV in fig. 3 of coordinates
C ≈ 0 and R/∆t ≈ 1.2) increases with the asymmetries
and our path (determined for symmetric fission) pene-
trates this island in the last point of the infered path
parametrization. That behavior produces a thin barrier.

2.7 Fragment yields

The fission path being known, it is possible to com-
pute the penetrabilities for each fission fragment partition
(A1Z1, A2Z2). The following simple formula is used for the
penetrabilities:

P (A1, Z1, A2, Z2)=exp

{
−0.43921

√
µ

∫ Rf

Ri

√
Ed−EvdR

}
,

(27)
where, to avoid cumbersome calculations, the effective
mass was considered approximatively equal to the reduced
mass. Here, Ev ≈ 0.5 MeV is the zero-point vibration
energy.

Having in mind that the probability to obtain a par-
tition is proportional to its penetrability, it is possible
to obtain the yields y normalized to 200% of the fission
fragments

y(A1, Z1, A2, Z2) =
P (A1,Z1,A2,Z2)∑NZ2

NZ=NZ1

∑NA2(NZ )

NA=NA1(NZ )
P (A0−NA,Z0−NZ ,NA,NZ)

× 100 ,

(28)
where Z0 = 92 and A0 = 238 or 239. In this applica-
tion, the penetrabilities were calculated only for the fis-
sion products ranging between NZ1 = 34, NZ2 = 48,
NA1 ≈ NZ , NA2 ≈ 2NZ which gives reasonable values
for the penetrabilities.

Up to now, the isotopic distribution of the fragments
was obtained as a function of the excitation energy E∗ of
the parent. The energy of the compound nucleus modifies
the potential barrier, that is, the penetrabilities, and the
number of prompt neutrons emitted. These two effects
modify the distributions of the final products essentially.

In figs. 10 and 11, the fragment yields for 238,239U
are displayed. At E∗ = 200 MeV, the symmetric fission
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Fig. 10. Isotopic and mass fragment yields for three values of the excitation energy (3 MeV top, 50 MeV middle and 200 MeV
bottom) for the 238U-induced fission normalized to 200%.

yield is overestimated. This effect can be explained in the
following way. As mentioned in sect. 2.1, in the region of
the shapes characterized by C < 0, an arbitrary condi-
tion is imposed in computing the volume V2. This con-
dition causes a sudden variation of the nuclear shape at
large elongations, when the system transits from symme-
try to little asymmetries. This change in the nuclear shape
parametrization is reflected in an increase of the liquid
drop deformation energy for the asymmetric shapes. This
variation of the macroscopic barrier is clearly evidenced
in fig. 8. Here, the dotted curves (for E∗ = 200 MeV)
for mass symmetry and mass asymmetry fission can be
compared.

2.8 Neutron evaporation

The fission is accompanied by an almost instantaneous
emission of neutrons, which are of decisive importance in

calculating the final mass yields. The average number of
neutrons emitted per fission is called ν̄. The dependence
between the number of emitted neutrons and the excita-
tion energy of the compound nucleus was taken as [38]

∆(ν̄(E∗)) =
1
8.5

E∗. (29)

It is also considered that the energy supplied by the inci-
dent neutron is shared between the fragments proportion-
ally to their mass. The fragment mass dependence of ν̄ is
obtained from the universal neutron yield curves [39]

ν̄ ≈ 0.08(AL − 82) + 0.10(AH − 126), (30)

that is

ν̄H ≈ 0.10(AH − 126), (31)
ν̄L ≈ 0.08(AL − 82), (32)

where ν̄H and ν̄L refer to the evaporated neutrons from the
heavy and light fragments, respectively. Here, A1 = AH
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Fig. 11. Isotopic and mass fragment yields for three values of the excitation energy (3 MeV top, 50 MeV middle and 200 MeV
bottom) for the 239U-induced fission normalized to 200%.

and A2 = AL. The distributions of ν̄H and ν̄L are Gaus-
sian with σ2 ≈ 0.6. Such a curve rises linearly with
mass above A = 82 and above 128. In the central range
118 ≤ A ≤ 128, the values of ν were interpolated linearly.
The fission product yields Y (A′

1, Z
′
1) and Y (A′

2, Z
′
2) nor-

malized to 200% can be obtained by a folding procedure

Y (A′
H , Z1) =

A′
H+2ν̄H(A1)∑
A1=A′

H

y(A1Z1, A2Z2)

×
exp

[
−

(
ν̄H−|A1−A′

H |
σ

)2
]

∑A1
A′′

H
=A1−2ν̄H(A1)

exp
[
−

(
ν̄H−|A1−A′′

H
|

σ

)2
] , (33)

Y (A′
L, Z2) =

A′
L+2ν̄L(A2)∑
A2=A′

L

y(A1Z1, A2Z2)

×
exp

[
−

(
ν̄L−|A2−A′

L|
σ

)2
]

∑A2
A′′

L
=A2−2ν̄L(A2)

exp
[
−

(
ν̄L−|A2−A′′

L
|

σ

)2
] (34)

The fission product yields obtained in this way depend
strongly on the parent excitation energy deposited by the
incident neutron.

2.9 Distributions of fission products

In fig. 12 are displayed the isotopic and the mass dis-
tributions of the 238U fission for E∗ = 3 MeV (top),
E∗ = 50 MeV (middle) and E∗ = 200 MeV (bottom). The
gross features of the distributions are reproduced. Mass
yields observed in low-energy particle induced fission of
actinides are generally characterized by double humped
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Fig. 12. Isotopic and mass products distributions for three values of the excitation energy (3 MeV top, 50 MeV middle and
200 MeV bottom) for the 238U-induced fission normalized to 200%.

curves showing the preference for asymmetric mass divi-
sion. The peak to valley ratio reaches several orders in
magnitude. In this energy region, the distribution evi-
dences that products with mass 100–110 and 130–140 are
widely produced while the symmetric fission process has
a lower probability. Increasing the excitation energy, the
isotopic distribution becomes broader and the yields to-
wards symmetric fission are enhanced. Also, the maximal
values of the yields are shifted towards the stability line,
mainly due to the neutron evaporation. The distributions
of the 239U fission are displayed in fig. 13.

The model overestimates the charge odd-even effect.
The amplification of this staggering is partially due to the
parametrization imposed to the charge density. As men-
tioned in sect. 2.3.1, the charge densities begin to vary
from 0.7∆t and reach the final values at scission. As men-
tioned in ref. [40], it appears that the charges are fixed
later, when the neck radius is 1–2 fm. As it can be no-
ticed in fig. 2, a neck radius of 1–2 fm is obtained after

the exit point of the barrier, during the so-called rupture.
Therefore, during the penetration of the barrier, some ex-
perimental information indicate that the nucleus possesses
a uniform charge density. In the model, in order to dis-
criminate between different channels, the charge asym-
metry was forced to vary during the penetration of the
barrier. This observation can be understood in the fol-
lowing way. If Z1 and Z2 are odd numbers, changing the
charge densities of our two nascent fragments, the proton
single-particle level scheme remains almost unchanged be-
cause it depends mainly on the shape coordinates. In the
same time, the number of protons Z1, filling the levels of
the heavy fragment, can increase (or decrease) while Z2

decreases (or increases). This effect unbalances the last
occupied proton single-particle states of the nascent frag-
ments, that is, the difference Ccor = |ε1 − ε0| + |ε2 − ε0|
(defined in sect. 2.3.3) increases. Another cause for this
large odd-even effect is also due to our hypothesis em-
ployed in sect. 2.4 which assesses that a preformation of
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Fig. 13. Isotopic and mass products distributions for three values of the excitation energy (3 MeV top, 50 MeV middle and
200 MeV bottom) for the 239U-induced fission normalized to 200%.

the fission channel occurs when the target nucleus receives
energy. That means, a pair is broken at the beginning of
the fission process. Therefore, due to the Franck-Condon
principle, the barrier is increased. However, this amplifica-
tion of the odd-even effect is not dramatic because we are
mainly interested in the trends exhibited by the product
yields as a function of the incident neutron energy, and
not by the absolute values of these yields. The variations
of the product yields vs. the excitation energy of the par-
ent lead us to estimate the optimum parameters for our
neutron-rich nuclei source.

The available data concerning the individual products
distributions [1] has only three incident neutron energies
(thermal, fast and high) and the uncertainties are very
large. Recently, low-energy fission yields (up 20–30 MeV
excitation) were obtained by bombarding a Pb target
with 750 AMeV 238U [41]. In the case of Te isotopes,
these data are compared with the 238U simulations at
E∗ = 3, 20, 30, 50, 75 and 100 MeV in fig. 14. In this se-

lected range, an agreement of up two orders of magnitude
is obtained between experiment and theory (30 MeV the-
oretical data). At E∗ = 3 MeV, in average 1 neutron is
evaporated and that causes an amplification of the odd-
nuclei yields. At higher energies, the even isotopes yields
are favoured. The agreement between experimental and
theoretical values is rather good having in mind the as-
sertion [42] that quantitative agreements over 20 orders
of magnitude for ab initio calculations concerning the iso-
topic distributions are remarkables.

It is important to confront the trends exhibited by
the products yields as a function of the excitation en-
ergy with available data. In ref. [43], accurate measure-
ments of Rb and Cs 238U fission products yields were
obtained for 40, 50 and 60 MeV bombarding protons.
Such data, determined with incident charged particles,
supply reliable information concerning the isotopic dis-
tribution as a function of the kinetic energy of the in-
cident beam. The variations of the average 〈A〉 values
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Fig. 14. Isotopic products yields for Te. The filled squares rep-
resent the data for low-energy fission of 238U while the filled cir-
cles are from the theoretical distribution for the same nucleus
for E∗ = 3 MeV, the up-point filled triangles for E∗ = 20 MeV,
the down-point filled triangles for E∗ = 30 MeV, the empty cir-
cles for 50 MeV, the empty squares for 75 MeV and the empty
triangles for 100 MeV.

of Rb and Cs isotopes with the incident proton ener-
gies are considered as a basis for our comparisons. Also,
it is considered that the incident kinetic energy offers
a good estimation of the compound nucleus excitation.
From ref. [43], ∆〈ARb〉/∆Ekin ≈ −0.01395 u/MeV and
∆〈ACs〉/∆Ekin ≈ −0.02825 u/MeV at an incident pro-
ton kinetic energy Ekin = 50 MeV. For E∗ = 50 MeV,
the theoretical product distributions of 238U fission give
∆〈ARb〉/∆E∗ ≈ −0.0542 and ∆〈ACs〉/∆E∗ ≈ −0.06387.
This behavior indicates that the model shifts faster the
isotopic yield distributions towards the stability line in
comparison with the experimental findings.

3 Fission products yields

In the following, fission product yields obtained in the
target are determined as a function of the initial deuteron
energy for a specific converter-target geometry. In this sec-
tion, Ed means the incident deuteron energy and En the
neutron energy.

3.1 Neutron distributions

The neutron angular P (θ,Ed) and energy distributions
P (θ,En, Ed) produced in the converter depend strongly
on the initial deuteron energy Ed. Increasing the deuteron
energy, the neutron flux in the forward direction increases
rapidly up to Ed ≈ 100 MeV. From Ed = 100 MeV a

saturation effect is visible. This effect causes an increase
of the neutron yields at almost all energies, including the
range 0–20 MeV where the neutron-rich isotopes produced
by fission can survive.

Angular and energy distributions of neutrons obtained
by bombarding thick targets with incident deuterons up
to 200 MeV are reported [44–46], scanning a large energy
interval where quantitative data were not available. A sim-
ple phenomenological formalism intended to simulate the
distributions in the forward direction was developed and
presented in detail in ref. [45] by extending the formalism
based on Serber’s theory [47]. The experimental results
compared with phenomenologic simulations proved to be
in good agreement. Following the Serber’s prescriptions,
two distributions can be modelized semi-classically in the
case of thin targets: one distribution is due to the stripping
reaction and another is due to direct collisions between nu-
cleons, resulting in the escape of some particles from the
target nucleus. For an initial deuteron energy, these dis-
tributions determine the neutron probability P (θ,En, Ed)
to be emitted at an angle θ at an energy En. In the case
of thick targets, this probability must be integrated over
the deuteron range weighted with the cross-section (d, n).
The theoretical angular and energy neutron yields were fi-
nally obtained by renormalization of the integrated prob-
ability with the experimental value of the total yield at
0◦. This formalism needs, first of all, an estimation of the
neutron yields at 0◦ for thick Be targets as a function of
the deuterons incident energies. This dependence gives the
approximate productivities for other kinds of targets by
using simple geometric relations involving the atomic and
mass numbers of the concerned elements. Semi-empirical
formulae for this quantity (neutron yields at 0◦) are given
in ref. [48] (for incident energies smaller than 15 MeV)
and ref. [49] (over 15 MeV), but their validity becomes
uncertain for deuteron energies greater than 50 MeV due
to the lack of experimental data over this value. Using
the experimental yields obtained in refs. [44–46], together
with a systematic of experimental data, a fit of the data
has been made and the following formula is proposed for
the yields at 0◦ up to 200 MeV deuteron incident energy
on thick Be targets

Φ(θ = 0◦) =


10.1× 1012E2.95
d , for Ed < 15 MeV,

3.4×1013E2.5
d , for 15 MeV ≤ Ed ≤ 50 MeV,{

928.3
1+exp[0.053(98−Ed)]

−6.89
}
×1016, for 50 MeV<Ed

(35)
where Φ is the number of neutrons over the incident charge
unit in sr−1C−1 and the incident energy of the deuteron
Ed is given in MeV. The experimental systematic and the
empirical parametrization are displayed in fig. 15.

Our estimations require the cross-section for neutron
production in order to weight along the target thickness.
One choice for the dependence of the forward direction
cross-section in the Be target is given by the formula [50]

dσ(E)
dΩ

∣∣∣∣ θ = 0◦ = 0.18 ln(E) + 0.007E (36)
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Fig. 15. A systematic of total yields Φ at 0◦ vs. the incident en-
ergy of the deuteron Ed for the bombardment of Be is obtained
by plotting experimental results given in different references:
filled circles from ref. [49] (5, 6, 7, 9, 12, 18 and 23 MeV), filled
squares from ref. [50] (14, 14.8, 18, 23 and 40 MeV), up-point
filled triangles deduced from ref. [51] (40 and 53.8 MeV), down-
point filled triangle from ref. [52] (12.5 MeV), empty circle from
ref. [53] (20.2 MeV), empty square from ref. [48] (13.54 MeV),
up-point empty triangles from [45] (17, 20 and 28 MeV), empty
rhombs from ref. [54] (16, 33 and 50 MeV), empty crosses from
ref. [55] (4 points at 40 MeV), filled stars from the compilation
of ref. [56] (14, 16, 18, 22, 23, 29, 33, 34, 40 and 50 MeV),
empty stars from ref. [57] (14.8, 18 and 23 MeV), asterisk from
ref. [58] (20 MeV), filled circle at Ed = 200 MeV from ref. [46],
empty square at 60 MeV deduced from ref. [59], filled squares
at 80 and 160 MeV from ref. [44]. In the low-energy deuteron
energy the plot looks like with the curve drawn in ref. [60].
The curve is obtained with the semi-empirical parametrization
given by relation (35).

and another proposed dependence [45] as

dσ(E)
dΩ

∣∣∣∣ θ = 0◦ = 2.× 10−4E1.5

∣∣∣∣dEdt
∣∣∣∣ , (37)

where dE/dt is the stopping power in MeV/(g/cm2), E
is the deuteron energy in MeV for the range t in the tar-
get, and the cross-section is expressed in b/sr. Both ap-
proximations were used in calculations up to 40–50 MeV
deuteron energies. In the following, the dependences ex-
hibited by these formulae were extrapolated for all the en-
ergy domain concerned with the imposed restriction that
when σ reaches the value 1.35 b, this value being regarded
as an upper limit [59], σ remains constant. In this context,
it was considered that at the highest energies, the major
part of the cross-section is concentrated in the forward di-
rection. The theoretical simulations for incident deuteron
at energies of 80 and 160 MeV obtained by using these
two parametrizations (relations (36) and (37)) were al-
most identical. Also, as usually done for thick targets, an
attenuation of the initial beam was taken into account by
multiplying the cross-section with a factor directed by a
law of the type exp(− ∫

Nσ dt), where
∫
N dt is the num-

Fig. 16. Left part: angular neutron distribution Φn vs. the
direction angle θ for Be target. The filled squares correspond to
the deuteron incident energy Ed= 80 MeV. Right part: neutron
energy distributions ΦEn at different detection angles (marked
on the plots). The full curve represents the simulations.

ber of nuclei on the surface unit. Another modification of
the formalism of ref. [45] is that the straggling angle is
computed by extrapolating the table of ref. [61] as a func-
tion of the deuteron position in the target, while in our
previous work [45] the mean value over the range of the
deuteron was considered.

In fig. 16, a comparison between the experimental and
theoretical distributions obtained in ref. [44] for an inci-
dent deuteron energy of 80 MeV is displayed. This compar-
ison offers an idea about the degree of accuracy obtained
in computing the neutron distributions.

3.2 Number of fission events

The dimensions of the 238U fissionable target are small, so
that it is possible to neglect the attenuation of the neu-
trons in the uranium. The geometry illustrated in fig. 17
will be considered in the following because it is the most
often geometry used in practice. The set-up consists of
two cylindrical pieces: the converter and the fissionable
target positioned horizontally along the deuteron beam di-
rection. Usually, the target is made from uranium carbide
UCx. The converter delivers the neutrons obtained mainly
by break-up processes as mentioned previously. Using the
above theoretical distributions P (θ,En, Ed) and P (θ,Ed),
a mean distance of the neutrons emitted from a slice of
the converter in the fissionable target can be calculated

Rm =
4
∫ Rc

0

∫√R2
c−y2

0
dm(x, y)dxdy

πR2
c

, (38)

where

dm(x, y) =

∫ 2π

0
[
∫ π/2

0
P (θ,Ed)d(θ, ϕ) sin(θ)dθ]dϕ

2π
∫ π/2

0
sin(θ)P (θ,Ed)dθ

(39)

is the mean range of the neutron in 238U emitted in a
point (x, y) in the converter and d(θ, ϕ) is the range of the
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Fig. 17. The experimental schematic set-up. Top: perspective
vue and bottom: section along the symmetry axis. (x, y) repre-
sents a point in one slice of the converter where the deuteron is
broken and a neutron emerges at angles θx and θy. The max-
imal values of these angles allowing that the neutron hits the
target are also represented. D is the distance between the slice
of the converter and the entry edge of the target, L is the thick-
ness of the cylindrical target, R is the radius of the target, Rc

is the radius of the converter (which equals the radius of the
beam).

neutron emitted at the angles θ and ϕ. Rc represents the
radius of the converter, considered equal to that of the in-
cident deuteron beam. The values of d(θ, ϕ) are computed
using geometrical relations. It was considered easier to re-
place the variables θ and ϕ with θx and θy fulfilling the
condition of the same angular domain

∫ 2π

0

[∫ π/2

0

P (θ,Ed)d(θ, ϕ) sin(θ)dθ
]
dϕ =

∫ π/2

−π/2

∫ π/2

−π/2

P (θ[θx, θy], Ed)d(θx, θy) sin(θ[θx, θy])

×D
(
θ, ϕ

θx, θy

)
dθxdθy, (40)

where

θ(θx, θy) = arctan
{[

tan2(θx) + tan2(θy)
]1/2}

, (41)

ϕ(θx, θy) = arctan
(
tan(θx)
tan(θy)

)
(42)

Fig. 18. The number of fission events Y able to produce
neutron-rich nuclear fragments per incident charge of deuteron
as a function of the deuteron energies Ed.

and the Jacobi determinant is

D
(
θ, ϕ

θx, θy

)
=

∣∣∣∣ dθ
dθx

dϕ
dθy

− dθ
dθy

dϕ
dθx

∣∣∣∣ . (43)

The significance of θx and θy can be found inspecting fig.
17. In these calculations, it is considered that the neutrons
are emitted in a weighted position in the converter

Rp =

∫ T

0
σ[E(t)]tdt∫ T

0
σ[E(t)]dt

, (44)

where σ[E(t)] represents the cross-section for neutron pro-
duction at the depth t in the converter and T is the thick-
ness of the converter.

Now, the total number of fission events can be approx-
imatively estimated by charge unit of incident deuteron

Nf (Ed) =
RmNtρU
MU

∫ Ed

0
σf (E)D(E,Ed)dE∫ Ed

0
D(E,Ed)dE

, (45)

where

D(En, Ed) = 2π
∫ π/2

0

P (θ,En, Ed) sin θdθ (46)

is an average energy distribution of the neutrons, σf (E) is
the fission cross-section, ρU is the U density, MU is the U
mass, D(E,Ed) is the neutron energetic distribution. The
total number Nt of neutrons emitted by the converter is

Nt = 2π
∫ π/2

0

P (θ,Ed) sin(θ)dθ. (47)

For a given geometry, these formulae allow us to estimate
the number of fission events in the target. If the cross-
section is multiplied with the products distributions nor-
malized to 200% obtained at each neutron energy, we are
able to determine the isotopic number of elements pro-
duced for an incident deuteron energy Ed.
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Fig. 19. The number of fission products Y (Ap, Zp) per incident charge of deuteron as a function of the deuteron energies Ed

for several neutron-rich isotopes.

4 Results and discussion

The theoretical optimum deuteron energy will be obtained
using two methods. First of all, a simple estimation of the
deuteron energy required to produce the largest number of
unstable products is obtained by taking into account only
the neutron distributions and some simple assumptions
concerning the fission. The second estimation takes into
account the isotopic product distributions and the varia-
tion of the excitation energy due to the incident neutron
binding energy in the compound 239U nucleus.

If the energy of the neutron is too high, the fragment
emits neutrons, so that it will be shifted towards the sta-
bility line. It was shown in refs. [1,7] that for excitation
energies larger than 20 MeV, the formed neutron-rich frag-
ments are too excited to survive. For example, analysing
the experimental data displayed in fig. 14, at low excita-
tions, the maximal yield is obtained for Ap = 134, while
the neutron drip line is in the vicinity of 138Te. The yields
decrease rapidly for isotopes heavier than 134Te. At exci-
tations energies larger than 20 MeV, due mainly to the
release of several neutrons, the yields are shifted towards
stability. So, in order to have a first-order estimation, it
will be considered that only fission events produced at

E∗ < 20 MeV produce neutron-rich products able to sur-
vive. In this first-order estimation, we neglect momentary
the nuclear structure of the parent nucleus by considering
that the initial kinetic energy of the bombarding neutron
equals the excitation energy. Including the following ap-
proximation in the numeric code

σ(E) →
[
1−H

(
E − E0

E0

)]
σ(E), (48)

the number of fragments produced the fission induced by
neutrons with incident kinetic energies lower than 20 MeV
can be obtained. Here, H(x) is the Heaviside function with
the properties that H(x) = 0, when x < 0 and H(x) = 1,
when x ≥ 0 and E0 = 20 MeV. That means, only fission
fragments obtained at energies smaller than 20 MeV neu-
trons are retained. However, the angular and energy neu-
tron distributions in the 0–20 MeV range present a strong
dependence on the initial duteron energy. This procedure
enables us to extract an approximate value of the best
deuteron energy.

In the following estimations, the converter thickness
was always chosen to equalize the 2H range at each inci-
dent energy. The radius of the 238U cylinder was 7 mm,
its thickness is 60 mm and it was considered to be built
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from UCx. The distance between the exit edge of the con-
verter and the entrance face of the 238U target correspond
to 10 mm. The converter was considered to be built from
C. The deuteron beam radius equals 1 mm.

In fig. 18, the number of fission events able to produce
neutron-rich fragments per charge of incident deuterons
is plotted as a function of the deuteron energy. It can be
observed that the maximum number of interesting fission
events is produced when the 2H has an energy close to
100 MeV. In the same time, the yield does not increase
very much in the interval 60 MeV to 100 MeV, and it will
be more convenient to construct an accelerator for 2H at
60 MeV, due to the costs of such a facility.

In the following, in connection with the previous fixed
converter-target geometry, the number of fission products
produced in the uranium target per deuteron incident
charge will be determined. The neutron-rich isotopes of
Se up to Ce will be analysed. In the frame of this second
estimation method, the structure of the parent nucleus is
taken into consideration trough the mass defect evaluation
and without imposing the condition (48). In this context,
firstly, the excitation energy of the uranium target must
be determined.

The excitation energy is estimated crudely in connec-
tion with the incident neutron energy. If the compound
239U nucleus is formed, the excitation energy deposited by
the neutron is considered equal to its incident energy plus
the variation of the mass defect of the 239U nucleus vs. that
of the 238U+n system: QBE = M(238U)+mn−M(239U) =
4.8 MeV. Having in mind that this variation is about
4.8 MeV, and that we are concerned by the influence of
the excitation energy in a wide range of neutron energies,
up to hundreds of MeV, it can be assessed that for our
purpose this variation of the mass defect has little influ-
ence. In the case of 238U residual nucleus, the energy of the
recoil neutron was considered as approximatively 3 MeV
and the excitation energy deposited in the 238U of about
En − 3 MeV.

The cross-section curve exhibits a threshold behavior
characterized by a second step that occurs at a bombard-
ing energy of about 6-7 MeV. This is the threshold for a
“second chance fission” where the 239U compound nucleus
can emit a neutron and the residual 238U nucleus under-
goes fission. Therefore, neglecting other fission channels,
the fission cross-section is divided in two components: a
cross-section for 239U with the threshold at approxima-
tively 1 MeV and a maximum value of ≈ 0.5 b and a
cross-section for the 238U with the threshold at 6 MeV and
a maximum value of ≈0.5 b. The total fragment distribu-
tion is obtained by overlapping these two distributions.

The number of products Y (Ap, Zp) produced in the
238U fission target by charge of incident deuterons are
displayed in fig. 19 as a function of the incident energy
Ed. Only one value of the mass number Ap is selected
for isotopes with half-lives near to one or several seconds.
A very pronounced odd-even effect in the atomic num-
ber Zp can be remarked. First, the even fragments will
be discussed. It can be evidenced that, as previously re-
marked, for Ed ≈ 100 MeV, the number of neutron-rich

nuclei supplied by the facility reaches values close to the
maximal ones. In the case of light elements, in the vicin-
ity of Ed = 100 MeV, the slope of the curves decreases
dramatically and a saturation behavior begins to be evi-
denced for larger values of the incident deuteron energy.
Concerning the heavy products, it is interesting to note
that even their yields begin to decrease slowly for Ed en-
ergies above 100 MeV. In almost all cases, the increase
of the neutron-rich product yields from 60 to 100 MeV is
lower than one order of magnitude. In the case of odd Zp,
the maximal values of the yields are attained for higher Ed

than for even Zp. In this case, the increase of the potential
barrier due to single-particle effects is greater and these
microscopical effects vanish at larger excitation energy of
the parent.

In the frame of the PARRNe project, the production
of noble gases was investigated experimentally using a
UCx cylindrical fissionable target containing about 30 g
of uranium. Experiments were realised at 80 and 130 MeV
deuteron energies using the AGOR cyclotron at KVI Grö-
ningen [62]. The noble gases were transported through a
transfer line in order to be collected on a cold finger. The
resulting activity was measured under good background
conditions by γ-spectroscopy. Comparisons with the the-
ory will be realised under the assumption that the num-
ber of isotopes detected is proportional to the number of
fission products (of the same isotope) produced in the fis-
sion target. Therefore, the ratios between the experimen-
tal yields measured at Ed = 130 MeV and 80 MeV were
computed. We obtained 1.91, 1.5, 1.3 and 1.53 for 89Kr,
137Xe, 138Xe and 139Xe, respectively. The theoretical val-
ues of the ratios of the yields produced in the fission tar-
get at the same energies were 5.04, 2.00, 1.78 and 2.05 for
the same isotopes, respectively. Quantitatively, the calcu-
lated and the theoretical values in the case of Xe isotopes
show a remarkable agreement. Qualitatively, the theory
evidences that the increase of the Kr yield is more pro-
nounced with the deuteron energy than those of the Xe
isotopes. Relatively to the even Xe isotope, the increase of
the odd Xe yields is more pronounced, both theoretically
and experimentally. The theory, in connection with the ex-
perimental data, shows that increasing the energy above
Ed = 80 MeV, the increase of the neutron-rich isotope
yields is not too consistent.

These calculations suggest that without expensive fa-
cilities, a large number of isotopes far from the stability
line can be obtained at a deuteron energy of 60 MeV.
Our estimations take into account the angular and energy
distributions of neutrons produced in the converter, the
excitation of the fission nucleus which modifies the chan-
nel partition (A1, Z1, A2, Z2) probabilities and the neutron
evaporation.

This work was sponsored by the European Contracts SPIRAL
II No. ERB 4062 PL 975009, No. FMGE CT 980100 and by
the IDRANAP European Center of Excellence.
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Greiner, Int. J. Mod. Phys. A 5, 3901 (1990).

11. M. Mirea, D.N. Poenaru, W.Greiner, Z. Phys. A 349, 39
(1994).

12. M. Mirea, D.N. Poenaru, W. Greiner, Nuovo Cimento A
105, 571 (1992).

13. M. Brack, J. Damgaard, A. Jensen, H. Pauli, V. Strutinsky,
W. Wong, Rev. Mod. Phys. 44, 320 (1972).

14. K.T.R. Davies, J.R. Nix, Phys. Rev. C 14, 1977 (1976).
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16. P. Möller, J.R. Nix, At. Data. Nucl. Data Tables 26, 165

(1981).
17. J. Maruhn, W. Greiner, Z. Phys. 251, 431 (1972).
18. M. Mirea, Phys. Rev. C 54, 302 (1996).
19. M.Mirea, F. Clapier, Europhys. Lett. 40, 509 (1997).
20. M. Mirea, Phys. Rev. C 57, 2484 (1998).
21. M. Mirea, Eur. Phys. J. A 4, 335 (1999).
22. M. Mirea, Phys. Rev. C 63, 034603 (2001).
23. E. Badralexe, M. Rizea, A. Săndulescu, Rev. Roum. Phys.
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